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Scientific investigations frequently involve data from computer experiment(s) as well as related physical
experimental data on the same factors and related response variable(s). There may also be one or more
expert opinions regarding the response of interest. Traditional statistical approaches consider each of these
datasets separately with corresponding separate analyses and fitted statistical models. A compelling argu-
ment can be made that better, more precise statistical models can be obtained if the combined data are
analyzed simultaneously using a hierarchical Bayesian integrated modeling approach. However, such an
integrated approach must recognize important differences, such as possible biases, in these experiments
and expert opinions. We illustrate our proposed integrated methodology by using it to model the thermo-
dynamic operation point of a top-spray fluidized bed microencapsulation processing unit. Such units are
used in the food industry to tune the effect of functional ingredients and additives. An important thermo-
dynamic response variable of interest, Y, is the steady-state outlet air temperature. In addition to a set
of physical experimental observations involving six factors used to predict Y, similar results from three
different computer models are also available. The integrated data from the physical experiment and the
three computer models are used to fit an appropriate response surface (regression) model for predicting Y.
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1. INTRODUCTION

Computer models are often used to perform experiments be-
fore expensive physical experiments are undertaken. The com-
puter models attempt to reproduce the physical properties of
a process by mathematically representing the individual physi-
cal subprocesses. For example, in the food industry, fluidized-
bed (or air-suspension) processes are increasingly used to coat
food particles with preservatives and flavor enhancers. Some
of the physical principles that govern the operation of flu-
idized beds are fairly well understood (e.g., heat transfer and
fluid flow), but others are less well characterized. As a result,
computer models based on these thermodynamic principles of
physics are constructed that resemble and simulate the actual
physical process. In this article we analyze data collected from
three such computer models (with each model accounting for
different effects), as well as data collected from a correspond-
ing physical experiment. We consider this example further in
Section 3.

It is statistically efficient and desirable to fit a single com-
mon response surface model that combines the physical exper-
imental data and the computer model output data to express the
relationship between the factors and the response variable. Al-
though the response variables of interest in the computer and
physical experiments may not be the same, we assume that they
can be related by a known transfer function. Thus we effec-
tively consider the same response variable in both types of ex-
periments. However, the computed (or measured) value of the
response variable need not be considered at the same factor val-
ues in both experiments. We require only that there exist some

common set of factors (either all or at least some) for both ex-
periments (see Sec. 2.3). For example, a broad (screening) com-
puter experimentmay be performed first, followed by a physical
experiment in a smaller region of particular interest (perhaps a
corner) of the overall computer experiment design space.

In addition, one or more expert opinions may be available
regarding the response variable of interest. Traditional statisti-
cal approaches consider each of these datasets separately with
corresponding separate designs, analyses, and results. A com-
pelling argument can be made that better, more powerful statis-
tical results can be obtained if we simultaneously analyze the
combined data using a recursive Bayesian hierarchical model
(RBHM) that we propose in Section 2. As we illustrate, the
simultaneous analysis of such combined data permits the un-
known coefficients in an assumed overall regression (or re-
sponse surface) model to be estimated more precisely, thereby
producing a better-fitting response surface.

In Section 2 we present the methodology, including our im-
plementation of the RBHM. In Section 3 we describe the me-
chanics and process variables involved in the fluidized bed
example and the experiment from which the data arise. We
apply the RBHM methodology to the fluidized bed study and
present the resulting response surface in Section 3.3. We dis-
cuss sensitivity to prior specification in Section 4 and the results
and methodologyin Section 5.
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2. DATA INTEGRATION MODEL AND ANALYSIS

Fundamental to Bayesian estimation is the notion and use of
prior and posterior distributions. A good elementary discussion
of prior and posterior probabilities and distributions was given
by Berry (1996). An RBHM provides a convenient way to se-
quentially combine the data as follows. Initial informative, but
diffuse, prior distributions are defined, one for each unknown
parameter. Any available expert opinion data that exist are then
used to update these priors to form corresponding posterior dis-
tributions. This represents stage 1 of the combined analysis.
These posteriors then become the prior distributions for the sec-
ond stage, in which the computer experimental data are used to
update these priors to form stage 2 posterior distributions. At
stage 2, the posteriors thus represent the combined use of only
the expert opinion and computer data. Finally, these posteriors
become the priors for stage 3, in which the physical experimen-
tal data are used to construct the final desired posteriors. In this
way, all available data are used recursively within the context
of the model to successively (and more precisely) estimate all
of the desired parameters of interest.

The design and analysis of computer experiments has evolved
as the power of computers has grown (although it has cer-
tainly not kept pace). Sacks, Welch, Mitchell, and Wynn (1989)
provided a review of techniques used in the analysis of out-
put from complex computer codes, as well as issues for de-
sign. Latin hypercube sampling had its genesis in the design of
computer experiments (McKay, Beckman, and Conover 1979).
A Bayesian treatment of the design and analysis of computer
experiments was presented by Currin, Mitchell, Morris, and
Ylvisaker (1991). These authors were concerned primarily with
issues when the only source of information is the output from
a complex computer model.

Combining multiple sources of information had its genesis
in the meta-analytic literature. Zeckhauser (1971) provided an
early treatment of meta-analysis, and Hedges and Olkin (1987)
provided a nice review of meta-analytic techniques. Meta-
analysis has not been viewed without strong criticism (Shapiro
1994). Miuller, Parmigiani, Schildkrout, and Tardella (1999)
presented a Bayesian hierarchical modeling approach for com-
bining case-control and prospective studies, where effects due
to different studies as well as different centers are allowed.

Craig, Goldstein, Rougier, and Scheult (2001) presented an
approach to forecasting from computer models that explicitly
incorporates two of the data sources that we consider, expert
opinion and computer experiments. They considered the possi-
bility of multivariate responses on the computer model (which
they called computer simulators). Physical data in the form of
historical measurements are included by using this information
in prior (expert opinion specification). Their approach is based
on a Bayesian treatment with no hierarchical modeling and in-
ventive ways of including several types of expert opinion. The
primary concern is improving prediction of the computer code.

Kennedy and O’Hagan (2001) considered the three sources
of data that we consider in this article. Their approach uses a
general Gaussian process model for the computer model as a
function of inputs. They used physical data to calibrate the com-
puter experimental data and to estimate unknown parameters of
that model. They also found Bayesian hierarchical models to be
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a useful tool in implementing their models. Their framework is
flexible and, in the context of trying to improve computer mod-
els, the appropriate approach. The essential difference between
their work and our proposed approach is that we are trying to
use computer model outputs and expert opinion to improve es-
timation and prediction of the physical process, and Kennedy
and O’Hagan were trying to use physical experimental data and
expert opinion to improve the computer model.

The statistical notion of pooling data (sometimes also known
as “borrowing strength”) underlies our discussion of the RBHM
and analysis. A commonly used and extremely powerful
method for borrowing strength is hierarchical Bayesian model-
ing; a nice introductionto both hierarchical Bayesian modeling
and borrowing strength was given by Draper et al. (1992). The
basic idea involves the notion that when information concern-
ing some response of interest arises from several independent
but not identical data sources, a hierarchical model is often use-
ful to describe relationships involving the observed data and
unobserved parameters of interest. For example, unobserved
parameters might be the coefficients and error variance in an
assumed response surface model, as well as unknown biases.
Each source of data provides perhaps biased information about
these parameters, in which case methods that borrow strength
will be useful. We illustrate the practical advantages of bor-
rowing strength for estimating the unknown parameters in Sec-
tion 3.2.

We propose fitting models using information from three
distinct sources: expert opinion, computer experiments, and
physical experiments. The problem is difficult, because the
information sources are not necessarily all available at each
of the design points. For example, physical experiments may
be performed according to a statistically designed experiment,
whereas computer experiments may be collected at (possibly)
different design points. In addition, expert opinions may be
available at only a very limited set of design points, such as
the center or corners of the statistical design region. Our goal is
to combine these sources of information using an appropriately
flexible integration methodology that considers (and automati-
cally adjusts for) the uncertainties and possible biases in each
of these three data sources.

Thus we begin by considering regression models of the form

Y=/X B)+e,

where X is a design matrix, f is a vector of unknown coef-
ficients, and € is a vector of unobserved errors. Note that al-
though this formulation can accommodate a general class of
models, f(-), that includes both linear and nonlinear regression
models, here we consider only linear models [i.e., f(X, B) =
Xf]. Although the strategy that we use is quite general, the
model and mathematics that we develop is applied to a normal
linear model. In addition, we consider only quantitative vari-
ables, although qualitative variables coded with indicator vari-
ables fit naturally into this framework.

2.1 Physical Experimental Data

We assume that we are interested in estimating the parame-
ters of a model that describes a physical experiment. For this
example, assume that the physical experimental data can be de-
scribed using the familiar model

Y, ~N(X,B.0°0),
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where the subscript p denotes the “physical experiment.” Thus
the physical experimental data are assumed to be normally dis-
tributed with mean X, 8, where X,, is a model matrix and B is
a vector of parameters that need to be estimated. We see that
each physical observation is independent of the others and has
common (homoscedastic) variance 02, which also must be es-
timated.

If physical experimental data were the only information
source considered, then this model would typically be fit us-
ing either standard least squares regression methods (Draper
and Smith 1998) or standard Bayesian linear model methods
(Gelman, Carlin, Stern, and Rubin 1995). However, we want to
incorporate information both from experts and computer exper-
imental data to “improve” our estimates of 8 and o2

2.2 Expert Opinion

Suppose that there are e expert opinions. These opinions
do not have to be from distinct experts. The ith expert opin-
ion (i=1,...,e) is elicited at design point x;. Some points in
the design space will have exactly one elicited expert opinion,
whereas others will have many or none. Each expert observa-
tion contains the following information:

e The expected response, yo,.

e A subjective coverage probability on the physical response
i, &, and the quantile associated with that probability, gg; ;
thatis, Pr(y; < gg) = &;.

Typically, the analyst elicits a quantile of interest; that is, &; is
specified. However, the expert may indicate which quantile he
or she is most interested in specifying. The methods developed
here do not depend on which approach is taken. In addition, we
consider the elicited “worth” of the opinion in units of equiv-
alent physical experimental data observations, m{(,?). In other
words, suppose that a physical experiment could be conducted
at x; that would yield one observation; if the expert’s opinion
should be weighted half of that observation, then m((,?) =.5. At
times, the elicited values (y,;, &, g, m{(,f)) may be obtained
simply by requesting them from the expert. However, it may be
difficult for the expert to provide information directly on these
values (especially g¢, and m{(,?)), and other elicitation techniques
may be useful (Meyer and Booker 1990).

To use these data, we need to transform these individual
pieces of information into probability distributions that provide
information about 8 and o2. Assume for the moment that the
three aforementioned quantities can be used to create “data”
with the following model:

Y, ~ N(X()ﬂ + 4o, 0'220)-

Like the physical experimental data, the expert data are
assumed to be normally distributed. However, the mean is
X,B + 8,, where 8, is a vector of location biases that are
expert-specific. The variances are also biased, and the matrix
X, contains the scale biases for each expert. Besides location
biases, in which an expert’s average value is high or low rela-
tive to the true mean, scale biases often occur due to information
overvaluation and are well documented in the elicitation litera-
ture. For example, an expert may be asked to provide what he
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or she thinks is a .90 quantile, but responds with what is ac-
tually only a .60 quantile (Meyer and Booker 1990). Although
responses from experts can be correlated by having nondiago-
nal elements in X,, we consider uncorrelated responses; thus

1/ko, o - 0
0 1k, 0
. : 0 I
0 e e 1k,

In addition, we assume the following prior distributions for
the unknown parameters 8 and o2

Blo? ~ N(p,, a*C,)

and
02 ~1G(ay, Vo),

where IG(a, b) is the inverse gamma distribution with density
function

b
f(zla,b)O(z_(““)exp{——}, z>0.

Z

Assume for the moment that we know &, and m,, where
m, is a vector denotingthe “worth” of the expert opinions. Con-
tinue to assume that we have created “data” y, from the expert
opinions, and write out the likelihood for the data model,

(72)
|0'220|'5

1 fn
« exp{—p[(y{, — (XoB+80)) 2, (yo — (XoB + 60))]}.

Using Bayes’s theorem, we can use the data provided by the
expert opinions to update the prior distributions for 8 and o2,
The resulting stage 1 posterior/updated prior distribution for
(ﬁ, 0'2), conditionalon n = (80, X0, my, C,, MRy, o, Vo), 18
n(ﬁ|025 n, y())

~N(XE X, +C D 2 02 (XX, + C D)
and

(o1, y,)

Zf:l Mo,
2

)

~ IG(oc{, +
Yo+ 5[(Yo — 80) T, (yo — 80)
+u1,C, ey — 2 (X2 X, + c;l)—lz]>,

where z= X%, (y, — 8,) + C; ' 1,

Given that the full vector of observationsy, was not elicited
(only sufficient statistics were), we cannot immediately eval-
uate any term in these expressions. We instead reexpress the
components in these posterior distributions in terms of the
elicited values, so they can be evaluated. Suppose that m,, ob-
servations were elicited as y,, from the ith expert opinion. Then

(X2, (vo — 80));

Moy Mo,
= k{)1x1j< Z(yoj,, - 801)) +--+ koexejj ( Z(yoj,, - 8%))

n=1 n=1
- 801) + -+ k()emoexejj(yog - 8%),
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because y,, is the expected or average response for the design
point.
Using a similar argument, we can show that

(Yo — 80)'Z,  (yo — 80)

Mo, Mo,
= kol (Z(yojn - 801)2> +--- 4+ k()g ( Z(yoj,, - 8%)2)

n=1 n=1

e
= Z kf)imoi (512 + (y”i - 801‘)2)’ (1)

i=1

where sl2 = (yo; — qgl.)2 /Z2, which is the variance approxima-
tion implicitly elicited from expert i. Equation (1) follows from
the identity var(Y) = E[Y?] — E[Y]?.

By a similar argument,

e
/5 —1
(X()Zo X())lj = Z knm()nxnixrgj~

n=1

These representations allow calculation of the quantities in the
posterior distributions based on the elicited values rather than
on the actual observations.

For the unknown parameters n = (8o, X, my, Co, i,
Oy, Yo), we propose the following prior distributions:

Ko =ay,,
C, = aC{,I5
0y = dy,,
Yo = Qy,,

Mo, ~ uniform(.Sm{()f), 2.0m{(,f)),

iid
80, ~ N(0o, £,
9{) ~ N(me{,a Sé{’)5
53 ~ IG(aé;“z, bg{%),

g
ko, ~ G(¢o, @),
¢0 ~ G(a¢(;’ b¢0)’

and
Wy ™~ G(aw{,’ bw{,)’

where a and b subscripted indicate constants, and G(a, b) in-
dicates a gamma distribution with mean ab and variance ab?.
These highly parametric specifications suggest that sensitivity
may result from choices of distributional form as well as hyper-
parameter choices. As with any analysis, increasing the degree
of assumption increases the potential for sensitivity to those as-
sumptions. For example, inadequate sample sizes will certainly
exacerbate these sensitivities. In Section 4 we consider a sensi-
tivity study to examine the degree to which our results depend
on the foregoing hyperparameter choices.

There are similarities between this approach to the quantifi-
cation of expert opinion and Zellner’s approach using g-prior
distributions (Zellner 1986; Agliari and Parisetti 1988). Both
approaches rely on the natural conjugate prior for (8,072).
However, Zellner (1986) elicited posterior means for 8 and o2,
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whereas we elicit predicted observations y,. Agliari and
Parisetti (1988) extended Zellner’s methods to include a dif-
ferent design matrix, XA; similarly, we do not require that the
factor levels where the expert elicitation occurs correspond to
the levels where the physical or computer experimental data are
collected.

2.3 Computer Experimental Data

We have used the expert opinion data to develop stage 1 pos-
terior distributions for 8 and 2. We continue to update our
knowledge about these parameters using data from computer
experiments. Let the computer data and associated model para-
meters be indexed by ¢, where the jth element of the response
vector Y is y¢;. Consider the following model:

Y. ~N(XB +8.,0°%,)
Blo? ~N(n,, 0>Co),

and
o2 ~1G(ac, Ye).

For this development, assume that . and C, have the same
diagonal form as X, and C,. The “prior” distributions for
Blo? and o? are the stage 1 posterior distributions given the
expert opinion data. The only other unspecified prior distribu-
tions are

iid 2
8Cj ~ N(eCa éc )7
6, ~ N(mgc, sgc),

§2 ~1G(agz2, by2),

»
ke, ~ G($e. wc),

¢C ~ G(a¢c’ b¢£)’

and
W ™~ G(awc, bwc).

Although assuming a diagonal structure for X, yields a
model for the computer experiment where the observations
are conditionally independent given B, 8., o2, and k., the
observations are not unconditionally independent once the un-
certainty in the unknown parameters is integrated out. For ex-
ample, Broemeling (1985) derived the distribution for Y. for
the conjugate Bayesian linear model. Our model for the cor-
relation structure differs from those proposed by Currin et al.
(1991) and Welch et al. (1992), who assumed a distance-based
parametric form for X, with the parameters selected using
cross-validation or maximum likelihood estimation. Although
these forms of prior distribution could be incorporated into our
analysis, we have chosen to induce correlation through the hi-
erarchical structure of the prior.

Computer models, especially when the physical processes
are not well known, often produce estimates that are biased
with respect to the physical data. These biases may be in the
mean structure (location bias) or in the variance (scale bias).
Computer experimental data are especially likely to have scale
biases, because these data usually tend to be less variable than
physical experimental data; in fact, there is often no stochastic
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variability for given values of the factors, because a computer
code is often deterministic. The variability occurs relative to
the assumed model. Another reason for the reduced variabil-
ity relative to physical experimental data is that we know that
not all factors generating the physical experimental data are in-
corporated into the computer code—perhaps all of the factors
causing variability are unknown. Because the location bias ad-
dresses only differences in the intercept term (Bo) between the
computer and physical data, more general bias structures for
the parameters also can be modeled. In Section 3 we motivate
these ideas by introducing the operation of fluidized beds and
the computer models for that process.

Because the location biases are additive (instead of multi-
plicative), the model only requires that data exist for a subset of
the full set of factors. That is, if only one data source includes
information on a factor, then only that source is used in esti-
mating that effect. The precision with which those effects are
estimated will be affected by the differing amounts of data used
in estimation. However, distributions can be calculated. If the
model is to be chosen based on the physical data only (as in
our example), then all of the factors would need to be present
in the physical experimental data. Thus the framework is quite
general and does not require that all factors be present in each
data source.

Other approaches that might be considered for modeling the
computer experimental data often use a Gaussian process (GP)
model (Santner, Williams, and Notz 2003). Although the GP
approachis commonly (and appropriately)used for many prob-
lems, the RBHM provides an alternative that is useful and eas-
ily interpreted for certain classes of problems. The benefits of
a linear models approach as outlined in the RBHM are that it is
computationallytractable, easily interpretable,and easy to visu-
alize. Disadvantages of using a linear models approach include
that they cannotact as an interpolator (whereas GP models have
this feature, which explicitly acknowledges the deterministic
nature of computer experiments), they are not as flexible as
GP models, and they require more observations when higher-
order terms are needed in the model. Considering these benefits
and limitations, researchers must ascertain the suitability of this
formulation (or any other modeling approach) when combining
data sources that are diverse, such as computer experiments and
physical experiments.

In Section 3 we illustrate a problem that is well suited for our
proposed modeling approach (RBHM).

2.4 Incorporating Physical Experimental Data

Recall from Section 2.1 that the model for the physical ex-
perimental data is

Y, ~N(X,8,0°D).

After incorporating the computer experimental data into the
analysis, we have a stage 2 posterior that is used as the prior
for (B, %) in the stage 3 analysis.

The stage 3 analysis calculates the final distributions for the
parameters of interest. These calculations cannot be done in
closed form, but are carried out using Markov chain Monte
Carlo (MCMC). The Appendix provides general information
on MCMC and the Metropolis—Hastings algorithm.
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3. APPLICATION OF RECURSIVE BAYESIAN
HIERARCHICAL MODELS TO FLUIDIZED
BED PROCESSES

Fluidized-bed microencapsulation processes are used in the
food industry to coat certain food products with additives.
Dewettinck, Visscher, Deroo, and Huyghebaert (1999) de-
scribed a physical experiment and several corresponding ther-
modynamic computer models developed for predicting the
steady-state thermodynamic operation point of a Glatt GPCG-1
fluidized-bed unit in the top-spray configuration. Figure 1 il-
lustrates the simple geometry of this unit, which is essentially
an upside-down truncated cone. The base of the unit contains
a screen, below which is an air pump. Also, there are coating
sprayers at the side of the unit.

To use the unit, a batch of uncoated food product is placed
inside the “cone,” and the air pump and coating sprayers are
turned on. This “fluidizes” the product in the unit and coats the
product as it passes by the sprayer. This is continued until the
desired coating thickness is achieved.

When room conditions and process conditions are constant,
a fluidized-bed process will attain its steady-state thermody-
namic operation point. This state can be described in terms of
the temperature and humidity inside the unit. The importance of
the steady-state operation point is that product characteristics,
such as coating evenness and efficiency, are directly related to
it.

Several variables potentially affect the steady-state thermo-
dynamic operating point:

V¢, fluid velocity of the fluidization air
T,, temperature of the air from the pump
Ry, flow rate of the coating solution

T,, temperature of the coating solution
My, coating solution dry matter content
P,, pressure of atomization air.

The ambient room conditions inside the plant, such as temper-
ature (7,) and humidity (H,), may also have an effect on the
steady-state process conditions.

3.1 The Data

Dewettinck et al. (1999) considered 28 process conditions
of particular interest (settings) for a GPCG-1 fluidized-bed
process. In the experiment, distilled water was used as the coat-
ing solution. Thus My was O (no dry matter content) for all
28 runs. Also, Ty was at room temperature (about 20°C) for

coating sprayer

air pump
Figure 1. A Glatt GPCG-1 Fluidized Bed Unit.

TECHNOMETRICS, MAY 2004, VOL. 46, NO. 2
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Table 1. Process Variables Table 3. Correlation Matrix
Hr(%)  Tr(°C)  Ta(°C)  Re(g/min)  Pa(bar)  V¢(m/s) Hy Tr Ta Ry Pa Vi Toexp
51.0 20.7 50 5.52 2.5 3.0 Hr 1.00 .57 —.26 —.33 -.39 —.69 —.53
46.4 21.3 60 5.53 2.5 3.0 Tr 57 1.00 —-.09 -.07 —.04 —.28 -.37
46.6 19.2 70 5.53 2.5 3.0 Ta —.26 —.09 1.00 .82 06 —.08 .73
53.1 21.1 80 5.51 2.5 3.0 Ry -.33 -.07 .82 1.00 09 -.10 .35
52.0 20.4 90 5.21 2.5 3.0 Pa -.39 —.04 .06 .09 1.00 18 08
45.6 21.4 60 7.25 2.5 3.0 Vi —.69 —.28 —.08 -.10 .18 1.00 47
47.3 19.5 70 7.23 2.5 3.0 T2,exp -.53 -.37 .73 .35 .08 47 1.00
53.3 21.4 80 7.23 2.5 3.0
44.0 20.1 70 8.93 2.5 3.0
52.3 21.6 80 8.91 25 3.0 . .
55.0 20.2 80 7.57 1.0 3.0 30 minutes and their average was recorded. The average outlet
54.0 20.6 80 7.58 1.5 3.0 air temperature (the steady-state response of interest), 72, exp, is
50.8 21.1 80 7.40 2.0 3.0 . . .
48.0 512 80 743 55 30 reported in Table 2. Dewettinck et al. (1999) also considered
42.8 22.4 80 7.51 3.0 3.0 three unique computer models to predict the steady-state outlet
55.7 20.8 50 3.17 1.0 3.0 air temperature for each run. These computationalresponses are
55.2 20.7 50 3.18 1.5 3.0 . . T T T
54.4 50.7 50 319 50 30 also given in Table 2, denoted by 73,1, 12,2, and 13 3.
55.4 19.8 50 3.20 25 3.0 There are important differences among the three computa-
52.9 20.0 50 3.19 3.0 3.0 tional models described in detail by Dewettinck et al. (1999).
28.5 18.3 80 7.66 2.5 3.0 .
6.1 19.0 80 769 55 4.0 In summary, the first computer model does not include ad-
24.2 18.9 80 7.69 25 45 justments for heat losses in the process. The second computer
25.4 18.5 80 7.70 2.5 5.0 model takes those heat losses into account. A further adjust-
45.1 19.6 50 3.20 2.5 3.0 . . .
43.1 203 50 353 55 4.0 ment for the inlet airflow represents the fundamental difference
42.7 20.4 50 3.20 25 45 between the second and third computer models.
38.7 21.6 50 3.22 2.5 5.0

all 28 runs. Table 1 gives the room conditions (i.e., T- and H;)
and settings for the remaining four process variables (i.e., T,
R¢, P4, and Vy). Thus the six factors actually studied are
T,,H:, Ty, Ry, Py, and Vy.

For each factor combination, glass beads were put in the unit,
and the process was run for 15 minutes to attain steady state.
Then temperature inside the unit was measured at 20, 25, and

Table 2. Experimental and Computer Model
Steady-State Temperatures

T2exp (°C) T21(°C) T22(°C) T23 (°C)
30.4 324 31.5 30.2
37.6 39.5 38.5 37.0
451 46.8 455 43.7
50.2 53.8 52.6 51.0
57.9 61.7 59.9 58.2
32.9 35.2 34.6 32.6
39.5 42.4 41.0 39.1
45.6 49.5 48.5 46.4
34.2 37.5 36.6 34.8
411 455 44.3 42.0
45.7 50.5 49.0 47.0
44.6 49.8 48.4 46.3
44.7 49.8 48.4 46.3
44.0 49.2 48.0 45.7
43.3 48.6 47.5 454
37.0 39.5 38.0 37.7
37.2 39.5 38.5 371
37.1 39.5 37.5 36.7
36.9 39.5 38.5 36.1
36.8 37.7 37.2 36.2
46.0 48.7 47.3 451
54.7 57.7 56.2 54.2
57.0 60.1 58.7 57.0
58.9 62.0 60.5 58.7
35.9 37.9 371 36.1
40.3 41.7 40.8 40.1
41.9 43.0 42.3 41.4
43.1 43.9 43.3 42.6

3.2 Modeling T2 exp in Terms of Room and
Process Conditions

Table 3 shows the correlation matrix for the room condi-
tions, process conditions, and observed steady-state tempera-
ture 72 exp. Figure 2 is a matrix plot of these seven variables.
Note that T, has the highest correlation with T3 exp (r = .73).

Model choice is complicated by the fact that the underlying
design is not at all clear. The covariance matrix reveals that
some of the covariates are highly correlated (as high as .82) in-
dicating possible collinearity. We also note that the full second-
order model is fully saturated.

Chipman, Hamada, and Wu (1997) described a Bayesian
variable selection procedure that places hierarchical prior distri-
butions on second-order effects. In their approach, higher prior
probability is given to interactions if one of the main effects is
in the model, and an even higher probability is placed on in-
teractions when both main effects are in the model. Using their
approach on the physical data, we obtain the variable selection
results displayed in Table 4, which provide the most likely mod-
els and their respective posterior probabilities.

To illustrate the RBHM approach, we use the most likely
model from Table 4 to form X, where X is composed of a col-
umn of 1’s (for the intercept) and columns corresponding to 7,
Ry, Vr, and Ry x Vy, whose respective regression parameters

Table 4. Bayesian Variable Selection Results

Model Pr(model|data)
B1Ta+ BoRs+ B3 Vi+ BaRex Vg 1169
B1Ta+ BoRi+ B3 Vi+ BaHrx Tr+ BsRrx Vi .0349
B1Ta+ BoRs+ B Vi+ PaH? 0155
B1Ta+ BoRs+B3Vi+ BaTrx Ta+ BsRex Vi 0141
B1Ta+ B2Rs+ B3 Vi+ BaRsx Vi+Ps VP 0136
Bo + B1Ta+ BaRy + B3 Vs + BaH? 0132
ﬂ1 Tr+ﬂ2Ta+ﬂ3Rf+ﬂ4Vf+ﬂ5fo Vf .0130
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Figure 2. Scatterplot Matrix of the Experimental Response With Each of the Six Covariates.

are B = (Bo, ..., Bs) . Table 5 contains the OLS fit of the most
likely model given in Table 4.

The hyperparameter values used in our example are given in
Table 6. Note that we used the same hyperparameters for all
three computer experiments. Because we have no prior knowl-
edge as to the sign of the location bias, we center the dis-
tribution of ., at 0 (i.e., unbiased in location) and allow the
mean of that distribution to have a standard deviation of 10.
Although we believe that the computer models are all reason-
ably good approximations of the physical model, we do not
have a good idea about the degree of separation, and thus al-
low a generous variability for the location biases lag = 2,000
and bff = 3.0 suggest a mean for the variance distribution of
2,000/(3 — 1) =1,000 and a standard deviation of 2,000/((3 —
1) - (3 —2)) = 1,000]. The distribution of scale biases is also
somewhat unknown. With little or no prior knowledge, we
would allow the mean of the scale biases to be unity (unbiased
in scale). Further, we believe that the standard deviation of the
scale biases should be no greater than 15, and thus we let the

Table 5. OLS Fit for Tp ey =B+ B1(Ta— Ta) + B2(Rs— Re)+
B3(Vi— Vi)+Ba((Rr — Re)x (Vi — Vi) +€

Parameter  Standard T for Hy:
Variable  DF  estimate error Parameter=0  Pr>[T|
Intercept 1 42.9769 1714 250.7352 0
Ta 1 9.4756 .3056 31.0076 0
Ry 1 —4.9048 .3035 -16.1626 0
Vi 1 3.9345 1761 22.3445 0
Rex Vi 1 1.4263 1671 8.5336 0

adj — R2 = .9855 on 23 df

mean of the scale bias distribution be 1 and the standard devia-
tion to be 15. This allows a generous range for the scale biases.

3.3 Recursive Bayesian Hierarchical Model
Analysis Results

Figures 3(a)—(e) show the posterior for 8 with only the phys-
ical experimental data, the physical data with the computer
experimental data taken separately, and the final posterior
distribution for f after incorporating all sources of informa-
tion. Figure 3(f) shows the corresponding posteriors for o’
The figures indicate two important and appealing aspects of our
RBHM approach. First, the additional sources of information
reduce uncertainty in the distribution of the parameters, thus

making our estimates more precise. Second, the additional data

Table 6. Hyperparameter Values for Parameters
in Computer Experiments

Hyperparameter Value
Ce 1.0x 1074
O{C 3.0
Be 3.0
my,, 0
s2 100.0

c
a2 2,000.0

c
b2 3.0

c
ag, 1.0x 1073
by, 1.0x 1073
N 1.0x 1073
buwg 1.0x 1073
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Figure 3. Comparison of Posterior Distributions Conditional on Different Sources of Information: (a) Bo, Intercept; (b) B1, Air Temperature;
(c) B2, Flow Rate; (d) B3, Fluid Velocity; (e) B4, Interaction Between Flow Rate and Fluid Velocity; and (f) o 2. The different lines indicate inclusion
of different data sources. (— physical only; - physical + 3 computers; ----- physical + computer 1; --- physical + computer 2; ——- physical +
computer3.)

sources do not necessarily contain the same amount of informa- In addition to posterior distributions for 8 and 2, our mod-
tion (althoughin our example they do have the same number of eling approach allows us to estimate the bias terms. As an il-
observations). lustration, Figures 4(a) and 4(b) present the location and scale

(a) (b)

.4
1

0.3

¢2

0.1

0.0

Figure 4. Comparison of (a) Location Bias and (b) Scale Bias Predictive Distributions for Three Different Computer Models of the Fluidized Bed
Process. [(a)— computer 1; - computer 2; ---- computer 3; (b) - computer 1;----- computer 2;— computer 3.]
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Table 7. Comparison of Confidence and Credible Intervals

95% confidence interval

95% credible HPD interval

Posterior

MLE Lower Upper mean Lower Upper
o2 .81 .49 1.60 .53 .36 77
Bo 42.97 42.62 43.33 43.01 42.75 43.28
B1 9.47 8.84 10.10 9.79 9.44 10.13
Bo —4.90 —5.53 —4.27 —4.82 -5.15 —4.48
B3 3.93 3.57 4.29 3.76 3.56 3.96
Ba 1.42 1.08 1.77 1.35 1.17 1.53

bias predictive distributions for each of the computer models.
Note that these distributions are integrated over the distribu-
tion of individual-specific locations and scale bias terms. One
appealing feature of these plots is that they indicate a new ap-
proach to computer model validation relative to the physical
observations. Those models that have most mass over O are less
location biased for the physical experimental data. For example,
the bias is more concentrated around O for the third computer
model than for the other two computer models. These plots also
reveal the uncertainty associated with the bias terms, a feature
that cannot easily be inferred from a casual examination of the
data. Note that the third model is the computer model that at-
tempts to account for more phenomena. Figure 4(b) reveals that
all three computer models tend to underestimate the variabil-
ity in the physical experimental data. Scale bias terms greater
than 1 (because the scale bias is parameterized as 1/kc;) indi-
cate underestimation of variability.

Table 7 contains the maximum likelihood estimates (MLEs),
95% confidence intervals (calculated from only the physical ex-
perimental data), and the posterior mean and 95% highest pos-
terior density (HPD) intervals calculated using the integrated
computer and physical experimental data for  and o%. Re-
call that an HPD interval is the shortest interval in the posterior
distribution containing 95% of the posterior probability. Notice
that the HPD intervals are shorter (sometimes significantly so)
than the 95% confidence intervals, reflecting the additional in-
formation that has been incorporated into the analysis.

3.3.1 Expert Opinion Data. Although no expert opinions
were available for use in the fluidized bed example, it is inter-
esting to observe the impact of such data on the results. For
purely illustrative purposes, suppose that eight expert opinions
were elicited for use in the fluidized bed example. The expert
opinions are given in Table 8, where T2 , denotes the expected
steady-state outlet air temperature, g 9 is the corresponding sub-

Table 8. Example Expert Opinion Data

Ta(°C) Ry (g/min) Vi (m/s) Tp,(°C) qg(°C) mol®
50 3 3 37 39 5
20 3 3 68 70 5
50 9 3 23 25 5
2 9 3 51 53 75
50 3 5 49 53 1.0
20 3 5 75 77 5
50 9 5 42 43 75
2 9 5 69 72 5

jective .9 quantile on the outlet air temperature, and m((,e) is the
equivalent “worth” of the opinion (see Sec. 2.2).

Figure 5 contains two posterior distributions, one distribution
for the regression coefficient for flow rate (82) and one for the
error variance (o%). The solid line is the posterior distribution
conditional on the artificial expert opinion with one computer
model and the physical experimental data. The dotted line is
the posterior distribution with only the physical experimental
data and one computer model. Due to estimation of location
and scale biases for both the computer data and the artificial ex-
pert opinion data, only a small gain in information results from
adding the expert opinion data. No inference from these pos-
terior distributions should be made, because the expert opinion
data were generated for illustration purposes only.

(@)

05

00

55 5.0 45 -4.0

10

05
1

00

T T T T
05 10 15 20

Figure 5. Comparison of Posterior Distributions for (a) B, Flow Rate
and (b) 2. The solid line represents the posterior distribution condi-
tional on the artificial expert opinion with one computer model and the
physical experimental data; the dotted line, the posterior distribution with
only the physical experimental data and one computer model. — EO
included;----- EO excluded.)
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Table 9. Hyperparameter Values for Sensitivity Analysis 4. PRIOR SENSITIVITY

Hyperparameter Low High Bayesian analyses that contain many parameters have the po-
Ce 1.0x 1077 A tential to rely heavily on prior distributions and prior parameter
%g 1 28 choice. To assess the impact of our choices of prior parameters
Sg 50 500 (zllnd hyperparameters), we conductgq a. small sen§1t1v1ty anlz(l)lzfs—
a.y 100 1,000 sis. To address hyperparameter sensitivity, we designed a 2

by 1 10 fractional factorial design in which we chose “high” and “low”
a¢° 1.0x 10-2 5 values that we deemed feasible. The values that we chose are
b¢z 1.0+ 10-2 o given in Table 9.

awe 1.0x 10-2 2 Marginal posterior distributions for the regression coeffi-
bwe 1.0x 1072 2 cients (Bo, ..., B4) and the error variance (02) are shown in

Figure 6. Because the posterior distributions do not lie ex-

(b)

Denstty

Denstty
Denstty

Density

Figure 6. Sensitivity Analysis for Selected Hyperparameters in the RBHM Formulation: (a) B¢, Intercept; (b) B4, Air Temperature; (c) B2, Flow
Rate; (d) Bz, Fluid Velocity; (e) B4, Interaction Between Flow Rate and Fluid Velocity; and (f) o2. The different lines indicate a different factorial
combination in the sensitivity analysis, and the thick solid line indicates the posterior at the original settings. The “rug” at the bottom of each picture
is the frequentist confidence interval based on the physical data only fit to the five-parameter linear model.
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actly on one another, there is clearly some sensitivity to prior
specification. The differences in the posterior distributions are
not significant, however. The only clear deviations are 6 of
the 32 fractional factorial combinations for o2 and 2 of the 32
fractional factorial combinations for Byg. These produce sig-
nificant departure from the posterior distributions presented in
Section 3.3. We note that each of these stems from a prior dis-
tribution that includes nearly no mass around the posterior dis-
tribution; that is, they represent infeasible prior distributions.
This indicates that care should be taken when specifying prior
parameters on the variability. Sensitivity is observed only when
priors are completely misspecified.

5. DISCUSSION AND CONCLUSIONS

When expert opinionis elicited, an equivalentnumber of ob-
servations, m((,f), is also stated that reflects its worth in terms
of a number of equivalent physical observations. This parame-
ter is not required for the computer experimental data, because
this information is captured in the prior parameters 6., & 3’ e,
and w,. These parameters control the prior information about
the location and scale biases for the computer experimental
data. If the biases are known exactly (a point mass prior),
then each computer observation counts as exactly one physi-
cal observation—no information must be used to estimate the
biases, and it can all be used to estimate 8 and o2 1f these pa-
rameters are used to specify a very diffuse (“noninformative”)
prior with close to infinite variances, then each computer obser-
vation counts for only a tiny fraction of a physical observation.
If the parameters specify an informative prior, then the com-
puter observations account for some intermediate fraction of a
physical observation.

The model that we have used in our example treats each com-
puter model independently. In the extreme, this implies that
if the three models were identical, then we would count each
observation three times the fraction of a physical observation
implied by the prior distributions. We can change this by mod-
eling correlations between the computer models. There are two
obvious ways to do this. The simplest way is to add a hier-
archical structure on the hyperparameters (6., &, ¢., and w.)
of the various computer models. As discussed in Section 2.3,
this induces correlations in the unconditional distributions of
the computer observations. A second is to model the entire vec-
tor of observations from the three computer models directly as
a multivariate normal and to specify an appropriate covariance
structure. This choice would be especially appropriate in the
case in which we had precise information about the differences
in the physics modeled by the individual computer models. For
this example, we have insufficient knowledge about the precise
similarities/differences between the three computer models to
permit the use of any of them.

We have not imposed the requirement that the computed (or
measured) value of the response variable be considered at the
same factor values in both experiments. We only require that
there exist some common set of factors (either all or at least
some) for both experiments. Although the example does not
fully illustrate this, it is an important feature in the general
model. As the analysis proceeds by using information from one
type of experiment to update the distribution of the parameters,
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if there are no data at a particular design point for a particu-
lar experiment, then the distribution for the parameter remains
unchanged, except for correlations that may exist in the para-
meters.

As with any Bayesian analysis, there is sensitivity to the
specification of the prior distributions for the hyperparameters.
Fortunately, however, the sensitivity is particularly acute only
when the priors are completely misspecified. Although some of
the hyperparameter selections in Section 3.2 are somewhat ar-
bitrary, they illustrate the kinds of discussions that the analyst
would engage in with the data owner to arrive at “reasonable”
hyperparameter distributions. If at all possible, we prefer dif-
fuse but informative prior distributions using expert input.

In this example we included all three sets of computer data,
even though we believed that the models were successively im-
proved. We made this choice for two reasons: first, we believe
that by appropriate modeling of biases, there is information in
all of the codes that should not be discarded; and second, it is
often of interest to characterize the biases of each code relative
to the physical data.

We have presented an RBHM that can be used to combine
data from both computerand physical experiments. When avail-
able, expert opinion data are also used to “sharpen” the initial
informative, but rather diffuse prior distributions. Appropriate
biases are introduced as a way to account for differences in
these data sources. Sample results indicate that significantly
more precise estimates of the regression coefficients and er-
ror variance are obtained by means of this method. In addition,
the methodology can be used to recursively estimate those un-
known biases of particular interest. Biases that are not particu-
larly interesting can be marginalized (i.e., averaged out of the
analysis using appropriate priors). Obviously, not all problems
involving combination of computer models and physical exper-
iments are well suited to combination through statistical (re-
sponse surface) models. In our example, however, the approach
is well suited to the data collected, and the biases seem to re-
flect the actual differences between the computer models and
the physical data.

The methodology can also be used to combine various other
kinds of experimental information. Similarly, information from
more than two physical and/or computer experiments can also
be combined using the RBHM simply by considering an appro-
priate bias structure for each data source and by increasing the
number of stages in the analysis accordingly.
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APPENDIX: COMPUTATIONAL DETAILS
A.1 Markov Chain Monte Carlo

Suppose that we are interested in making statistical inference
about a parameter (possibly vector valued) ©. We characterize
our information (or lack of information) about the distribution
of ® = {61,602, ...,0,} as m(O) (prior distribution). Data are
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collected and represented by the likelihood or by f(x|®). In

any Bayesian analysis, inference on the parameters depends on

the calculated posterior distribution
n(0)f(x|0)

Jo T(©)f (x|©)d®

T(Ox) = 2)
In many situations, the denominator of (2) is not a well-known
integral and must be calculated numerically by, for example,
MCMC. Let ©_,, be ® with the vth element removed. A suc-
cessive substitution implementation of the MCMC algorithm
proceeds as follows:

1. Initialize ®? and set r = 1.
2. Setv=1.
3. Generate an observation 05’) from the distribution of

6,10, "1,

e replacing recently generated elements of
G)(_t;l) with elements of G)(_t)v if they have been generated.
4. Increment v by 1 and go to step 3 until v =n.

5. If v=nincrement ¢ by 1 go to step 2.

Under conditions outlined by Hastings (1970), as t — oo the
distribution of {910), A 9,?)} tends to the joint posterior distri-
bution of @, as desired.

Typical implementation of the algorithm generates an initial
“large” number of iterations (called the “burn-in”’) until the ob-
servations have converged. The burn-in samples are discarded,
and the observations generated thereafter are used as obser-
vations from the posterior distribution of ®. Nonparametric
density estimators (Silverman 1986) can then be used to ap-
proximate the posterior distribution.

A.2 Metropolis—Hastings

Some complete conditional distributions may not be avail-

able in closed form; that is, it may be difficult to sample from
[9v|®(_t;1)] o g(6y). Obtaining observations from such distribu-
tions is facilitated by implementing a Metropolis—Hastings step
(Hastings 1970) for step 3 in the algorithm givenin Section A.1.
This is difficult, because the distribution is known only up to a

constant. The procedure is as follows:

1. Tnitialize 6, and set j = 0.
@)
vﬂCW

), where g(x, y) is a probability density in

2. Generate an observation 6 from a candidate distribu-

tion q(e\sﬁj s e\flfc)w
y with mean x.

3. Generate a uniform(0, 1) observation u.

4. Let
(+1) orl, ifu=a(0),. 05,
e — | () :
Oy, otherwise,

where «(x, y) = min{—ﬁi;ggiﬁ;’ 1}

5. Incrementj and go to step 2.

The candidate distribution can be almost any distribution
(Gilks, Richardson, and Spiegelhalter 1996), although a sym-
metric distribution such as the normal results in a simplification
of the algorithm, and is called a Metropolis step (as opposed
to a Metropolis—Hastings step). A common choice for g(x,y)
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is a normal distribution with mean x and some variance which
allows the random deviates to be a representative sample from
the entire complete conditional distribution. A rule of thumb
given by Gilks et al. (1996) suggests that the variance in g(x, y)
be one-third of the sample variance of the observed data.

[Received June 2000. Revised October 2003.]
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